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We describe the order parameter S(T) of liquid crystals in the nematic state by a four-
parameter expression which is consistent with mean-field theory. A two-step fitting method is
applied to high resolution refractive index data for the nCB (n~5–8) liquid crystals,
processed according to Vuks and Neugebauer models. We find quasi-universal parameter
values. The average critical exponent is b~0.241¡0.012, in agreement with the mean-field
prediction for a tricritical point. Thus the temperature dependence of the nematic order
parameter is quasi-tricritical in all cases. The order parameter at the effective transition point
T** is S**~0.143¡0.05 and the relative polarizability anisotropy Da/nam~0.69¡0.03. We
show that earlier results using the Haller approximation were too low (b~0.16–0.19) because
of the assumption S**~0 and T**~TNI. The chosen fitting function provides the best
description of S(T) both close and far from T**. For all parameters, the alternating odd–
even effect with the number of C atoms in the alkyl chain is about ¡5% except for S** for
which it is ¡30%. 6CB is singled out by a somewhat different set of fitting parameters. 8CB
shows a pretransitional smectic behaviour starting from 4K above the smectic–nematic
transition point.

1. Introduction

There is a wide spread of data in the literature

concerning the temperature dependence of the order

parameter S(T) of uniaxial liquid crystals (LCs). It has

been pointed out that this is because the results are

dependent on the physical quantity whose anisotropy is

being measured and on the type of experiment [1].

Nevertheless, for some of the results presented in [1] the

scaling condition S(T~0)~1 has not been used.

The motivation for this work was to find out whether

the temperature dependence of S(T) in the nematic (N)

phase of a homologous LC series has a universal

behaviour. In particular, it was expected that its critical

exponent b should indicate membership of one of the

possible universality classes of LC critical behaviour [2].

In the expression for S(T), b values of 1/2 or 1/4 are

consistent with mean-field results for a critical point [3]

or tricritical point [4, 5], respectively, while b~0.325

corresponds to an Ising system with short range

interactions. Limiting values are incompatible with

existing theoretical insight, although intermediate

effective critical exponent values might be obtained at

finite distances from the transtion in cross-over ranges.

Previous experiments (assuming a simple relationship

between a microscopic and macroscopic order para-

meter [3]) seem to confirm b~0.25 for anisotropic

quantities such as the dielectric constant [6], the thermal

conductivity [7] and the magnetic susceptibility [8]. It is

surprising that, while in the field of calorimetric

investigations of phase transition it has been common

practice to fit the specific heat capacity Cp to expres-

sions with an appropriate set of adjustable parameters,

the analysis of the order parameter S(T) from refractive

index data is still nowadays performed using the Haller

approximation [9], which is incompatible with the

weakly first order nature of this transition [10]. The

critical exponents b obtained in this way have values

ranging between 0.16 and 0.19 that do not match any

of the predicted theoretical values.

In this work we present a series of new experimental

data on the temperature dependence of the refractive

index of 5–8CB liquid crystals and we revisit the

methodology for the systematic determination of S(T )
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in the N phase based on a four-parameter analytical

expression. A new combination of two fitting proce-

dures yields not only the optimum values of the

parameters, but also allows an overview of the x2r
hypersurface around the minimum. A strong degen-

eracy between some parameters is found. For the

analysis we needed accurate experimental data, pre-

ferably from a homologous series of well known

materials. The compounds investigated in this study

are members of the 4-n-alkyl-4’-cyanobiphenyl homo-

logous series (nCB with n~5 to 8). These materials with

uniaxial molecular symmetry exhibit N phases near

room temperature, have high positive optical aniso-

tropy and good (photo)chemical stability. Therefore

they have served in the past to test the validity of

theoretical models attempting to describe the macro-

scopic properties of LCs. Numerous reports on refrac-

tive index measurements of the nCB series are known.

However, few of them contain experimental data in

tabular form [11–14]. On the other hand, in most cases

the accuracy and resolution of refractive index and

temperature, especially in the region close to the

nematic–isotropic transition temperature TNI, were

unsatisfactory for an approach based on four-parameter

fits, as we use here.

2. Theoretical background
The nCB compounds in the N phase are good

candidates for testing molecular theories because these

molecules can be considered as rigid rods having

cylindrical symmetry about the axis of maximum

polarizability. According to Maier and Saupe theory

[15], the extent to which they are aligned is described by

a (microscopic) order parameter S~(1/2)n3 cos2 h-1m,
depending on an average over all molecules (the angled

brackets). The orientation of individual molecules is

accounted for by the angle h between the molecular

axis and the optical axis and it depends strongly on

temperature T.

In the case of optical measurements, the square

of the refractive index is equivalent to the high

frequency permittivity. A crucial role in modelling

optical and electrical properties of a LC is played by

the correct estimation of the local field Ei surrounding

the molecule. Two models have been extensively

applied to uniaxial materials. The first one of Vuks–

Chandrasekhar–Madhusudana (VCM) [16, 17] assumes

that Ei is isotropic even in the anisotropic N phase, and

it leads to the result:

V~
Dn2

Sn2T{1
~

Da

SaT
S Tð Þ ð1Þ

where, Dn2~n2e{n2o is the anisotropy of the square of

the refractive index, and the tensorial average nn2m is

given by:

Sn2T~ 1=3ð Þ n2ez2n2o
� �

: ð2Þ
Here no and ne are the ordinary and extraordinary

refractive indices, respectively. The polarizability aniso-

tropy is denoted by Da~al2at. The mean polarizability

is defined similarly to equation (2), nam~(alz2at)/3,
with al and at the longitudinal and transverse polariza-

bilities relative to the molecular axis, respectively.

The second model proposed by Neugebauer–

Maier–Saupe (NMS) [18–20] allows for an anisotropic

distribution of neighbours around each molecule,

giving:

KN~
9

4B
B2{

10

3
Bz1

� �1=2

z
B

3
{1

" #
~

Da

SaT
S Tð Þ ð3Þ

where B is given by:

B~
Sn2T{1

Sn2Tz2

n2ez2

n2e{1
z2

n2oz2

n2o{1

� �
: ð4Þ

Later this model was improved by replacing the

representation of the molecule as a point polarizability

by an anisotropic polarizable spheroid [21].

The polarizability being a molecular property, it is

temperature-independent. The temperature dependence

of the order parameter in the nematic phase can be

approximated by the following four-parameter expres-

sion that is consistent with mean field theory for

a critical as well as a tricritical point for a weakly

first order transition (non-zero cubic invariant) [2, 10,

22, 23]:

S Tð Þ~S��zAtb ð5Þ
with b the critical exponent and t~12T/T** the

reduced temperature. T** is the effective second order

(quasi-critical or quasi-tricritical) phase transition point

seen from below TNI and is slightly higher than the

observed transition temperature TNI. At T~T**,

S(T**)~S**, which is a positive quantity. A reasonable

scaling condition for the order parameter is S(0)~1 at

T~0, which implies S**zA~1. We used for the fits

the following expression derived from equations (1),

(3) and (5):

KV, N~ Da=SaTð Þ S��z 1{S��ð Þ 1{T=T��ð Þb
h i

: ð6Þ

Equation (6) contains four parameters: Da/nam, S**,
T** and b. The temperatures are expressed in K.

Suppose the scaling condition is not fulfilled by a

sample having the order parameter S’(T). Then S’(0)
can be written as S’(0)~cS(0)|1. The constant c would

appear in equation (6) as a factor multiplying the first

parameter, c(Da/nam), and therefore it cannot be

determined independently from the latter. This means

that in the absence of additional information on
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polarizabilities, the validity of the scaling condition

(c~1) cannot be derived from the fit.
Previous attempts to determine the temperature

dependence of the order parameter assumed a smaller

number of unknown parameters. Haller’s approxima-

tion [9] consists of determining Da/nam and b from an

expression similar to equation (5) in which S**~0 and

T**~TNI. Only points situated far from TNI were

considered in the fit. As will be shown later, this

procedure leads to systematically lower values for the

critical exponent, bv0.20.

Despite its rather simple assumptions, the Maier–

Saupe theory [15] yields good results for many LCs. It

can be approximated analytically to within 1% by the

following expression [24]:

S Tð Þ~ 1{0:98 TV 2
�

TNIV
2
NI

� �� �0:22 ð7Þ
where V is the molar volume. Starting from the Maier–

Saupe theory, Picken improved equation (7) mainly by

adding a term of 0.1. The semi-empirical equation (8)

was found to describe S(T) well for several classes of

LC [25]:

S Tð Þ~0:1z0:9 1{0:99 T=TNIð Þe½ �0:25: ð8Þ
For the nCB series, e is close to 1.

In other reports S(T) was taken as a mean-field

function of temperature and was fitted to birefringence

data [26]. Higher order parameters have also been

determined [27].

3. Experimental

We measured the refractive indices of 5–8CB LC

with two refractometers based on the same principle:

determination of the critical angle by back reflection

(the light beam does not have to pass through the

sample). The prisms of the instruments were treated in

order to induce the orientation of LC in the N phase.

The deposition on one of the prisms of a film of

polyvinylalcohol, that was subsequently rubbed with

velvet tissue, induced the planar orientation (yielding

no). For homeotropic orientation (yielding ne) the other

prism was treated with cetyl-trimethylammonium

bromide. The sample layer between the main prism

and the secondary prism was 0.2mm thick. The cell was

loaded with LC sample at TwTNI to avoid flow

orientation. Subsequently, measurements were per-

formed whilst decreasing the temperature.

The ordinary refractive index no was measured on an

Atago–Abbe type 1130 refractometer, calibrated for the

D-line (l~589.3 nm) of Na lamp emission. The

distance between two divisions marked on the instru-

ment’s scale are equal to Dn~261024. By visual

interpolation of the position of the boundary line

between the dark and light fields, one may reach an

ultimate resolution of 561025. An automatic instru-

ment model GPR 11–37 manufactured by ‘Index

Instruments’ was used to measure the extraordinary

refractive index ne with a resolution of 1024. The light

source was a Na lamp emitting at l~589.3 nm.

The temperature of the two instruments was

controlled by the same thermostat, assuring a tempera-
ture stability of 0.04K. The instruments were connected

in series by silicon rubber tubes insulated by larger

rubber foam tubes. This allowed for simultaneous

measurements of no and ne in one run, and for samples

from the same batch (obtained from Merck). Measure-

ments were carried out between 20 and 50‡C in steps of

0.1K. A quartz crystal thermometer (based on

temperature–frequency conversion) with a resolution

of 0.01K was positioned in the circulating water close

to the prism of the Atago instrument. The absolute

temperature of ne measured by the GPR instrument

was shifted when necessary such as to bring into

coincidence the N–I transition on both no and ne
branches. We considered the transition temperature TNI

to be the lowest temperature of a measured point in the
I phase. The observed TNI temperatures (¡0.03K) are:

308.47K, 301.27K, 315.50K and 313.64K for 5–8CB,

respectively.

Because of high ne values of the LC (comparable to

that of the glass prism, np~1.73976), the accessible

temperature interval in the N state was smaller than

9K (v4K for 5CB). This problem can be circumvented

by deriving ne from no and Dn determined by the wedge

method [11, 24], but then the attainable resolution is

only 1–2%. Absolute n values found in the literature

[11–14] are spread in an interval of ¡0.003 about our

results.

4. Results and discussion

The experimental values of no(T) and ne(T) in the N

phase and of n(T) in the I phase, are listed in tables 1

and 2. In the N state the refractive index values were

averaged over results obtained in three runs. To allow

averaging, measured data were interpolated at the same

temperature intervals. Data for 8CB below the smectic–

nematic transition at 33.6‡C (T2TNI~26.9K) are not

shown here, and will be discussed elsewhere.

The refractive indices as a function of the shifted

temperature T2TNI are shown in figure 1. The figure
contains only the data of tables 1 and 2 that are situated

in the interval 210KvT2TNIv2K. In the N phase,

typical noise levels per point (as a function of

temperature) are s~0.1661024 and 0.4861024 for

no and ne, respectively, leading to s~1.361024 of KV

function. For comparison, the corresponding noise

levels of data available in the literature [11, 12] are

s~0.461024, 1.061024 and 3.561024. Our gain of a
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D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



Table 1. Refractive indices no and ne for 5–8CB in the
nematic phase as a function of temperature. The values
represent averages over three runs.

5CB 6CB

T/‡C no ne T/‡C no ne

35.198 1.55205 1.66160 27.934 1.55370 1.64525
35.101 1.55112 1.66370 27.849 1.55277 1.64737
35.063 1.55081 1.66440 27.733 1.55170 1.64980
34.967 1.55003 1.66610 27.723 1.55160 1.65000
34.880 1.54940 1.66760 27.646 1.55095 1.65140
34.812 1.54899 1.66860 27.598 1.55059 1.65230
34.678 1.54820 1.67045 27.540 1.55018 1.65320
34.601 1.54780 1.67140 27.477 1.54979 1.65410
34.523 1.54744 1.67230 27.385 1.54927 1.65530
34.408 1.54692 1.67352 27.346 1.54904 1.65580
34.321 1.54654 1.67442 27.279 1.54870 1.65660
34.235 1.54620 1.67526 27.211 1.54837 1.65750
34.061 1.54552 1.67699 27.129 1.54799 1.65835
33.930 1.54505 1.67817 27.091 1.54784 1.65875
33.843 1.54478 1.67898 26.989 1.54742 1.65980
33.757 1.54449 1.67968 26.960 1.54728 1.66010
33.660 1.54422 1.68049 26.902 1.54706 1.66070
33.564 1.54393 1.68122 26.787 1.54661 1.66180
33.487 1.54372 1.68177 26.709 1.54636 1.66250
33.362 1.54341 1.68261 26.584 1.54594 1.66360
33.275 1.54321 1.68321 26.536 1.54577 1.66400
33.179 1.54298 1.68385 26.410 1.54539 1.66500
33.082 1.54276 1.68445 26.304 1.54505 1.66580
32.996 1.54259 1.68500 26.246 1.54488 1.66630
32.890 1.54236 1.68566 26.033 1.54429 1.66785
32.784 1.54214 1.68631 25.860 1.54388 1.66905
32.668 1.54193 1.68699 25.589 1.54327 1.67077
32.591 1.54178 1.68743 25.425 1.54294 1.67173
32.485 1.54159 1.68800 25.300 1.54269 1.67245
32.408 1.54146 1.68844 24.759 1.54172 1.67535
32.302 1.54125 1.68904 24.315 1.54093 1.67755
32.196 1.54107 1.68959 23.784 1.54021 1.67990
32.119 1.54092 1.69000 23.301 1.53961 1.68190
32.013 1.54071 1.69057 22.867 1.53912 1.68360
31.936 1.54058 1.69096 22.413 1.53866 1.68530
31.820 1.54041 1.69153 21.950 1.53821 1.68690
31.733 1.54024 1.69198 21.409 1.53772 1.68870
31.647 1.54010 1.69241 20.926 1.53733 1.69027

20.434 1.53699 1.69180

7CB 8CB

T/‡C n
o

n
e

T/‡C n
o

n
e

42.262 1.53760 1.63970 40.371 1.53420 1.62980
42.125 1.53661 1.64250 40.314 1.53359 1.63120
42.039 1.53601 1.64410 40.208 1.53267 1.63340
41.913 1.53520 1.64610 40.102 1.53180 1.63530
41.846 1.53478 1.64710 40.025 1.53126 1.63660
41.750 1.53425 1.64850 39.919 1.53063 1.63820
41.673 1.53386 1.64950 39.822 1.53008 1.63950
41.557 1.53332 1.65080 39.726 1.52960 1.64060
41.461 1.53290 1.65190 39.626 1.52910 1.64180
41.355 1.53247 1.65300 39.539 1.52875 1.64270
41.249 1.53206 1.65400 39.500 1.52859 1.64320
41.153 1.53169 1.65490 39.443 1.52838 1.64375
41.066 1.53137 1.65580 39.375 1.52810 1.64450

Table 1. (Cont.)

40.960 1.53101 1.65670 39.269 1.52774 1.64540
40.864 1.53071 1.65755 39.163 1.52743 1.64630
40.748 1.53038 1.65840 39.086 1.52717 1.64690
40.690 1.53023 1.65880 38.961 1.52683 1.64790
40.584 1.52997 1.65960 38.874 1.52657 1.64860
40.478 1.52972 1.66030 38.749 1.52623 1.64950
40.401 1.52954 1.66080 38.696 1.52614 1.64990
40.315 1.52935 1.66140 38.580 1.52587 1.65060
40.209 1.52914 1.66210 38.484 1.52563 1.65125
40.112 1.52897 1.66270 38.388 1.52544 1.65190
40.035 1.52881 1.66310 38.311 1.52527 1.65240
39.929 1.52860 1.66380 38.195 1.52504 1.65315
39.843 1.52845 1.66420 38.099 1.52486 1.65365
39.746 1.52828 1.66470 38.022 1.52469 1.65410
39.650 1.52810 1.66510 37.925 1.52450 1.65460
39.573 1.52798 1.66550 37.800 1.52428 1.65530
39.467 1.52782 1.66610 37.714 1.52413 1.65575
39.371 1.52769 1.66660 37.608 1.52397 1.65630
39.265 1.52753 1.66720 37.531 1.52385 1.65680
39.159 1.52738 1.66770 37.434 1.52371 1.65720
39.072 1.52727 1.66810 37.338 1.52355 1.65780
38.966 1.52712 1.66860 37.242 1.52342 1.65820
38.889 1.52702 1.66900 37.145 1.52329 1.65870
38.783 1.52685 1.66950 37.068 1.52317 1.65910
38.687 1.52676 1.67000 36.953 1.52300 1.65960
38.590 1.52660 1.67040 36.876 1.52289 1.66000
38.494 1.52649 1.67085 36.798 1.52278 1.66040
38.398 1.52639 1.67120 36.683 1.52262 1.66090
38.311 1.52628 1.67160 36.596 1.52251 1.66125
38.205 1.52615 1.67210 36.500 1.52238 1.66175
38.109 1.52601 1.67260 36.394 1.52224 1.66225
38.022 1.52589 1.67300 36.288 1.52207 1.66275
37.916 1.52577 1.67340 36.182 1.52192 1.66315
37.839 1.52570 1.67360 36.081 1.52178 1.66360
37.724 1.52559 1.67410 35.975 1.52164 1.66405
37.646 1.52550 1.67450 35.869 1.52151 1.66455
37.541 1.52539 1.67480 35.811 1.52144 1.66480
37.425 1.52527 1.67525 35.715 1.52130 1.66520
37.309 1.52514 1.67565 35.609 1.52115 1.66570
37.252 1.52508 1.67585 35.512 1.52100 1.66610
37.155 1.52499 1.67620 35.406 1.52087 1.66650
37.069 1.52491 1.67655 35.329 1.52078 1.66690
36.953 1.52480 1.67700 35.223 1.52061 1.66730
36.866 1.52473 1.67730 35.127 1.52048 1.66760
36.770 1.52464 1.67765 35.026 1.52037 1.66810
36.674 1.52457 1.67800 34.920 1.52019 1.66850
36.577 1.52450 1.67830 34.824 1.52006 1.66900
36.491 1.52440 1.67860 34.756 1.51998 1.66930
36.385 1.52431 1.67900 34.669 1.51987 1.66950
36.279 1.52421 1.67930 34.554 1.51971 1.66990
36.192 1.52415 1.67960 34.448 1.51957 1.67020
36.086 1.52408 1.67990 34.352 1.51945 1.67050
35.903 1.52395 1.68050 34.275 1.51935 1.67080
35.710 1.52381 1.68120 34.178 1.51923 1.67120
35.537 1.52370 1.68170
35.335 1.52358 1.68230
34.872 1.52329 1.68360
34.391 1.52302 1.68486
33.928 1.52278 1.68616
32.936 1.52230 1.68880
31.992 1.52188 1.69111
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factor 2.7 in Kv noise is materialized by a significant

decrease (factor (2.7)2~7.25) of the noise level. Higher

noise level would lead to an unacceptably large

uncertainty of b. It emerges that repetition of the

measurements and averaging of data is a necessary

approach for successful fits using equation (6). The data

of table 2 and figure 1 referring to the I phase were

obtained with the Atago instrument. Typical noise level

Table 2. Refractive index n for 5–8CB in the isotropic phase
as a function of temperature.

5CB 6CB 7CB 8CB

T/‡C n T/‡C n T/‡C n T/‡C n

49.806 1.5809 28.763 1.58325 54.294 1.5656 54.350 1.5596
48.469 1.5814 28.688 1.58315 52.381 1.5664 52.315 1.56025
47.046 1.5820 28.603 1.5832 51.373 1.5668 50.507 1.56105
45.736 1.5826 28.603 1.58325 50.516 1.5672 48.594 1.56185
44.389 1.5832 28.509 1.58315 49.442 1.5676 48.142 1.56205
42.882 1.5839 28.405 1.5832 48.952 1.5678 47.737 1.5623
41.977 1.5843 28.339 1.5833 48.490 1.5680 47.530 1.5624
41.045 1.5847 28.198 1.58335 48.283 1.5681 47.332 1.56245
40.574 1.5850 28.113 1.5835 48.142 1.5682 47.124 1.5625
40.074 1.5852 47.972 1.5683 46.992 1.5626
39.914 1.5852 47.784 1.5684 46.917 1.5626
39.773 1.5853 47.586 1.5685 46.832 1.5627
39.650 1.5853 47.501 1.5685 46.738 1.5627
39.547 1.5854 47.407 1.5685 46.682 1.56275
39.443 1.5854 47.294 1.5686 46.559 1.5628
39.349 1.58545 47.190 1.5686 46.465 1.5628
39.236 1.5855 47.115 1.5687 46.380 1.56285
39.179 1.5855 47.040 1.5687 46.267 1.56285
39.076 1.5856 46.898 1.5687 46.201 1.5629
38.972 1.5856 46.861 1.5687 46.107 1.5629
38.878 1.5856 46.766 1.56875 46.003 1.5630
38.793 1.5857 46.653 1.5688 45.881 1.5630
38.718 1.5857 46.569 1.5688 45.815 1.5631
38.605 1.5857 46.465 1.56885 45.721 1.5631
38.548 1.5858 46.371 1.5689 45.608 1.5632
38.492 1.5859 46.286 1.5690 45.523 1.5632
38.360 1.5859 46.192 1.5690 45.419 1.5632
38.350 1.5859 46.079 1.5690 45.334 1.56325
38.237 1.5859 46.003 1.5691 45.240 1.5633
38.153 1.5860 45.900 1.5691 45.155 1.5634
38.058 1.5860 45.805 1.56915 45.052 1.5634
37.983 1.58605 45.721 1.5692 44.948 1.56345
37.879 1.5861 45.626 1.5693 44.854 1.5635
37.776 1.5861 45.523 1.56935 44.769 1.5635
37.691 1.58615 45.429 1.5694 44.675 1.56355
37.587 1.5862 45.334 1.5694 44.600 1.5636
37.493 1.5862 45.240 1.5695 44.534 1.56365
37.408 1.5863 45.137 1.5695 44.449 1.5637
37.305 1.5864 45.024 1.5696 44.355 1.56375
37.192 1.58645 44.948 1.5696 44.232 1.5638
37.088 1.58645 44.845 1.56965 44.119 1.5638
37.003 1.5865 44.750 1.5697 44.025 1.5639
36.909 1.5865 44.666 1.5697 43.950 1.5639
36.843 1.5866 44.562 1.56975 43.855 1.56395
36.758 1.5866 44.468 1.5698 43.742 1.5640
36.636 1.5867 44.392 1.5698 43.667 1.5640
36.560 1.5867 44.289 1.5699 43.563 1.5641
36.466 1.5867 44.194 1.56995 43.478 1.5641
36.363 1.5868 44.110 1.5700 43.403 1.56415
36.268 1.5868 44.015 1.5700 43.309 1.5642
36.184 1.5869 43.931 1.57005 43.186 1.5642
36.080 1.5869 43.827 1.5701 43.092 1.5643
35.986 1.5870 43.723 1.5702 42.998 1.56435
35.882 1.5870 43.639 1.5702 42.913 1.5644
35.778 1.5871 43.535 1.57025 42.828 1.5644
35.694 1.5871 43.460 1.5703 42.725 1.5644
35.599 1.58715 43.375 1.5703 42.659 1.5645
35.533 1.5872 43.281 1.5704 42.536 1.5645

Table 2. (Cont.)

5CB 6CB 7CB 8CB

T/‡C n T/‡C n T/‡C n T/‡C n

35.430 1.5873 43.177 1.5704 42.452 1.5645
43.083 1.57045 42.357 1.5646
42.989 1.5705 42.263 1.5646
42.894 1.5705 42.169 1.5647
42.810 1.5706 42.075 1.5647
42.715 1.57065 41.971 1.56475
42.612 1.5707 41.896 1.5648
42.518 1.5708 41.792 1.5649
42.395 1.5708 41.698 1.5649

41.594 1.56495
41.491 1.5650
41.415 1.5650
41.321 1.5651
41.217 1.5652
41.142 1.5652
41.048 1.56525
40.954 1.5653
40.850 1.5654
40.775 1.5654
40.633 1.56545
40.567 1.5655
40.483 1.56555

Figure 1. Experimental values of refractive indices no and ne
in the nematic phase of 5–8CB liquid crystals, as a
function of shifted temperature T2TNI. For scaling
reasons, in the isotropic phase only values within two
degrees of the transition are plotted.
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per point is s~0.361024, achieved without data

averaging.

We have performed fits of equation (6) on our data

and on data selected from the literature. The quantities

KV,N were calculated from the experimental curves

no,e(T) in the N phase. We took the following starting

values for the parameters: Da/nam~0.7, S**~0.15,

T**~TNIz0.2, b~0.25. The results (with KV) are

summarized in table 3.

The uncertainties of b fit values (a in table 3) are large

in the case of 5CB (only 4K available data range) and

of 8CB (only 3K useable data range determined by

range shrinking). For 6CB and 7CB the available data

range were 8K and 9K, respectively, resulting in

smaller uncertainties. Extending the temperature range

by just one point (fits b in table 3) reduces the

uncertainties at the cost of moderate increase of x2r .
However, the value b~0.29¡0.02 for 5CB is probably

too high due to incompatibility of our data with the

added point, as indicated by the rather poor fit

(x2r~2:22). The fits (c,d in table 3) on best data found

in the literature are consistent with fits of our data. For

5–7CB, in spite of broader temperature ranges, the

parameter uncertainties are larger than ours, since

experimental errors are also higher. However, the

temperature differences T**2TNI of 5CB, 6CB and

8CB are centred at negative values, which has no

physical significance. The liquid crystal 8CB (d in

table 3) yielded an unacceptable fit quality (x2r~4:10).
Due to insufficient data (only seven points within 4K

below TNI), the range could not be reduced enough.

This result is left in table 3 only to illustrate the

relevance of the discussion in the appendix with relation

to figure 9.

Figure 2 shows the profiles of x2r error functions

corresponding to fits (a in table 3) (b free), determined

by varying b in steps of 0.02 during the fitting

procedure. The solid lines are parabolic fits to the

points in the vicinity of the minima. The average

nboptm~0.241¡0.012 with a smaller standard deviation

than the uncertainties of individual fits. The average is

close to b~0.25 and excludes higher theoretical values,

as indicated by the sharp increase of x2r above b~0.30,

for all compounds. A confirmation of this statement

comes from fits (a, b fixed) of table 3. The error function

is not significantly higher than in the case when b was

left free, meaning that a three-parameter fit with

b~0.25 is also satisfactory. We conclude that within

experimental uncertainties, the critical exponent of the

order parameter is correctly predicted by the tricritical

hypothesis with b~0.25 for all the investigated nCB

compounds.

Figure 3 shows the correlation between parameters b
and S** along the degenerate river. The trajectories in

Table 3. Values of fit parameters of equation (6) (KV) and the corresponding x2r error function obtained from four-parameters fits
(unless differently indicated) applied to experimental data of refractive indices as a function of temperature, for 5–8CB liquid
crystals in the nematic phase. The molar mass M and the order parameter S(T) (from equation 5) at t~0.02 (T<T**26K)
are also given.

LCM/kg Da/nam S** S(t~0.02) T**2TNI/K b x2r Remarks

5CB 0.727¡0.008 0.157¡0.008 0.474 0.29¡0.03 (0.25) 1.63 a, b fixed
249.35 0.72¡0.11 0.15z0.05/20.25 0.478 0.30¡0.18 0.24¡0.11 1.52 a

0.78¡0.01 0.19z0.01/20.02 0.445 0.22¡0.06 0.29¡0.02 2.22 b

0.76¡0.05 0.16z0.10/20.29 0.451 20.03¡0.95 0.27¡0.11 1.26 c

6CB 0.690¡0.005 0.121¡0.005 0.451 0.15¡0.03 (0.25) 1.49 a, b fixed
263.38 0.67¡0.04 0.09z0.06/20.11 0.463 0.20¡0.12 0.23¡0.05 1.29 a

0.64¡0.03 0.01z0.08/20.14 0.483 0.30¡0.12 0.19¡0.04 1.93 b

0.70¡0.06 0.18z0.05/20.15 0.443 20.24¡0.42 0.29¡0.09 1.24 d

7CB 0.691¡0.008 0.172¡0.009 0.483 0.20¡0.06 (0.25) 2.00 a, b fixed
277.40 0.70¡0.06 0.18z0.05/20.13 0.479 0.18¡0.22 0.26¡0.08 1.98 a

0.68¡0.03 0.16z0.05/20.09 0.489 0.22¡0.16 0.24¡0.05 1.98 b

0.71¡0.22 0.17z0.05/20.17 0.473 0.65¡0.60 0.26¡0.21 1.66 d

8CB 0.674¡0.007 0.166¡0.007 0.480 0.14¡0.03 (0.25) 1.91 a, b fixed
291.43 0.65¡0.11 0.15z0.06/20.29 0.492 0.17¡0.16 0.23¡0.11 1.84 a

0.85¡0.20 0.20z0.01/20.06 0.388 20.20¡0.23 0.38¡0.13 4.10 d

aFits on our data
bFits on our data with temperature ranges extended by one additional point at TNI2T~34.2K for 5CB [11], at

TNI2T~13.8K for 6CB [12], and at TNI2T~20.0K for 7CB [13]. The points from [12, 13] are corrected for the wavelength used
(633 nm) to the wavelength of 589 nm according to [28].

cFit on data of [11].
dFit on data of [12]. The Da/nam values are corrected by z2% for the wavelength used (633 nm) to the wavelength of 589 nm

according to [13, 28]. The other fit parameters are wavelength independent.

234 I. Chirtoc et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



the (b, S**) plane are similar except that of 6CB which

is singled out by a lower position. This is also true for

fits (c,d in table 3) on literature data. The trajectories

follow a curved path so that there is an absolute

maximum S**max~0.2–0.25. This explains the asym-

metry of S** error intervals about Sopt (table 3). The

2x2rmin contour plots (shown only for 6CB) are very

elongated. The ratios between the long and short axes

of the distorted ellipses are about 50, which is an

indication of strong degeneracy between the two

parameters.

Figure 3 explains why in Haller’s approximation

(S**~0, horizontal dashed line) the b values obtained

are systematically lower, bv0.20. Moreover, Da/nam is

also lower by 8–12% and x2r is larger by a factor 1.3–1.8

compared with four-parameter fit results. On the other

hand, for a fixed value b~0.25 (vertical dashed line) the

corresponding S** takes a value between 0.12 and 0.17

(see also table 3). A somewhat broader interval

(S**~0.09–0.18) results from four-parameter fits (a in

table 3). This is in qualitative agreement with the semi-

empirical equation (8) with S**~0.1, as proposed by

Picken [25]. Large uncertainties in S** fit values are due

to the low sensitivity of S(T) to this parameter. The

smallest uncertainties (v¡0.1%) are obtained for T**

due to highest sensitivity of S(T) to it, but nevertheless

the temperature differences T**2TNI have uncertainties

of about ¡100%. The average nT**2TNIm~
0.21¡0.04K and is better defined.

The polarizability cannot be measured directly and

therefore reported values depend on models relating

the polarizability tensor to optical properties [29]. We

found that the quantity nam/M (M being the molar

mass) is remarkably constant (to within ¡0.3%)

for 5–9CB [30]. Therefore in figure 4 we chose to plot

the quantity (Da/nam)M. In this way the observed

Figure 2. Parabolic profiles of x2r error functions obtained
from three-parameter fits and stepwise variation of b. The
minima correspond to bopt (see fit results

a in table 3).

Figure 3. Correlation of four-parameter fit results in the (b,
S**) plane around the optimal values. For each
compound are shown the trajectories along the degen-
erate river (long lines) and across it (short lines). The
extension of the lines away from the intersection at (bopt,
S**opt) corresponds to the doubling of x2r min. The
contour plot representing 2x2r min is shown only for 6CB
(dashed distorted ellipse). Only positive S** values have
physical significance.

Figure 4. Product of relative polarizability anisotropy Da/
nam and molar mass M as a function of alkyl chain
length of the nCB homologous series: (squares) results (a)
from table 3; (triangles) results (c,d) from table 3; (stars)
results of [13] normalized to Raman depolarization data;
(crosses) from [14] where Maier and Meier theory [31]
was used to interpret refractive index and dielectric
constant data; (x) results from Kerr effect in LC
solutions [14]; (solid line) odd–even increments computed
by bond additivity [24], starting from the Da/nam value of
6CB (average of our result and that of [12]).
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alternation (odd–even effect) should be due to Da
alone. Fits on our data (squares), on literature data

(triangles), results involving Raman depolarization [13]

(stars), and theoretical prediction of odd–even incre-

ments based on bond additivity [24] (solid line) agree

within ¡5% (except 8CB from [13], for the same reason

as that shown in figure 3). Nevertheless, consistently

higher values [14] (crosses) were obtained by using the

Maier and Meier formalism [31] while lower values (x)

were obtained from the Kerr effect of LC in solution

[14].

When fitting the KN quantity, the parameters S**,

T**, b and the error x2r remained practically

unchanged, but the polarizability anisotropy decreased

by a factor 1.24 (1.23 in [32]) to (Da/nam)M<140. This

is in better agreement with curve (x) of isolated

molecules as determined from the Kerr effect in

solution (figure 4) where the anti-parallel coupling is

absent. It turns out that the Vuks assumption of

isotropic internal field is more appropriate for pure LC.

All parameters and S(T) at t~0.02 show the known

odd–even effect [13] with an amplitude of ¡5%, except

S** which has ¡30%, see figure 5. Based on equa-

tion (1), this means that the alternation of the square of

the refractive index anisotropy is due to contributions

from both the polarizability anisotropy and the order

parameter. In figure 6 we show the order parameter of

5–8CB as a function of reduced temperature t. 6CB is

situated in the lowest position, as in [13, 14]. The fits

with equation (5) are indistinguishable from the points

and provide the best description of experimental results

both at large and small t values. The other models fail

in one or other of the temperature ranges.

5. Conclusions

The starting point of this work rests in the earlier

disagreement between theoretical and experimental

values of the critical exponent b of the order parameter

S(T) obtained from (but not only) refractive index data

of liquid crystals. In the past, b was extracted from

experimental data of anisotropic physical quantities, by

fits with empirical equations containing two or three

parameters. We demonstrate that this approach leads

systematically to b values too low as compared with

predictions of existing theories.
We used in our approach a four-parameter expres-

sion that is consistent with mean-field theory. We

determined S(T) in the nematic phase of nCB LC, from

high temperature resolution refractive index data. The

fit function can be applied to any anisotropic quantity

characterizing the LC. The data were processed

according to two models: (i) the Vuks approximation

assuming an isotropic internal field, and (ii) the

Neugebauer model of anisotropic local field. We find

that S(T) is the same with the two models, but the

relative polarizability anisotropy Da/nam of pure LC is

better described by Vuks’ model while that of LC in

solution (equivalent to isolated LC molecules) is better

accounted for by Neugebauer’s model.

Despite an advanced two-step fitting procedure, a

detailed theoretical study of fit function, and a

correction method for the localization of the minimum

Figure 5. Odd–even effect of normalized fit parameters and
of the order parameter S(T) at t~0.02 (<T**26K),
(with values a of table 3) as a function of alkyl chain
length of the nCB homologous series.

Figure 6. Order parameter vs. reduced temperature, as
determined from equation (1) applied to our experimental
data of 5–8CB, with fit values a of table 3. For 8CB only
data points displayed by large rhombi were considered
in the fit (corresponding to temperature range
T**2T~3.05K in figure 3). The marker indicates the
position of the smectic–nematic (SN) phase transition.
Dashed curves represent traditional theoretical models
for the order parameter: Haller (equation (5) with
S**~0, T**~TNI), Maier–Saupe equation (7), and
Picken equation (8).
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of the error function (see appendix), the four-parameter

fits proved to be a difficult task. The parameter pairs

(b, S**) and (b, Da/nam) are strongly correlated. Their

separation is facilitated by the availability of data in a

wide temperature range (both high and low tempera-

ture end). The statistical analysis showed that in order

to determine the parameter set with a reasonable

uncertainty, it is necessary to average the data over

several runs.

We found for 5–8CB an average value of nbm~
0.241¡0.012, which confirms the tricritical hypothesis

predicting b~0.25. Thus, other possible theoretical

values are excluded. There is no evidence for a trend in

b values within the homologous series 5–8CB. The free

term S** takes values between 0.09 and 0.18, while

S**~0 (Haller approximation) yields significantly

worse fits. On average, the temperature difference

nT**2TNIm~0.21¡0.04K.

All fit parameters and S(T) exhibit an odd–even

effect that parallels the TNI temperatures. Its amplitude

is consistent with theoretical increments computed by

bond additivity. However, the polarizability anisotropy

is larger than that resulting from bond additivity, due

to the conjugation effect along the alkyl chain. The

6CB compound is singled out by lower S** and S(T)

values in comparison with the other compounds. Care

should be taken when processing 8CB data in order to

exclude from the fit the temperature range where

pretransitional smectic order influences the N phase.

Our fit expression provides the best description of

S(T) when compared with Haller, Maier–Saupe and

Picken models. Future work will be devoted to the

analysis of other anisotropic quantities characterizing

the LC, by using the same fit method.
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Appendix:

Sensitivity of the fit function to variations of parameters

The result of a multi-parametric fit is unequivocal

only if the parameters are not degenerate. The

covariance matrix gives a global view of the degeneracy

between them over the whole interval (of the tempera-

ture variation, in our case). Similar information can be

gained by analysing the sensitivity of the fit function to

the variation of parameters, with the advantage that it

reveals possible correlations within restricted regions of

the variable T.

In general, the relative sensitivity of S(T, i) to

parameter i (i~Da/nam, S**, T**, b) is defined as:

Ri~ dS=Sð Þ= di=ið Þ~d lnSð Þ=d ln ið Þ: ðA1Þ
High sensitivity results in low uncertainty on the fit

value (good fit). According to equation (9), if Ri takes a

value k at temperature T ’, then S(T ’) is directly pro-

portional to ik. For k~1, S(T ’)ji. If two sensitivities

are equal over a given interval, the respective para-

meters are fully correlated (degenerate) and cannot be

separated. In the case of partial degeneracy, the variation

of one parameter is compensated for by another one,

leading to increased uncertainty of the fit result.

An example of computed sensitivities is shown in

figure 7. The pairs Rb, Rs** and Rb, RDa/nam depend in a

similar way on temperature, indicating a certain degree

of degeneracy. A wider temperature range for the fit

reduces the correlation. From the slopes of the curves it

emerges that T** and S** are determined mainly by

experimental points situated close to TNI (highest RT**

and RS** within approx. 1K). Unlike this, RDa/nam and

Rb are (nearly) constant at any temperature. The

increasingly strong dependence (compared with that of

other parameters) of S(T) on T** upon approaching

the transition is illustrated by the following relations

based on values from figure 1:

S T��{6ð Þ! S��ð Þ0:14b0:75 T��ð Þ9:6

S T��{0:2ð Þ! S��ð Þ0:34b1:07 T��ð Þ213:

Figure 7. Relative sensitivities equation (9), of the order
parameter S(T) to the variation of parameters, computed
from equation (5) for typical values S**~0.1,
A~12S**, T**~305K and b~0.25. The sensitivity
RDa/nam~1 results from equation (6).

(A2 a)

(A2 b)
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From this discussion one concludes that the quality

of the fit depends on the availability of experimental

data in a wide temperature range that should approach

TNI as much as possible. In our case the best fit can be

obtained for T** while the worst one for S**.

Fitting methods

We have developed a non-linear multi-parametric

fitting program using a subroutine of MatlabTM, based

on the conjugated gradient method. The optimization

criterion is the minimization of the reduced x2r error

function that is given by the ratio between the variance

of the fit s2 and the variance of the data s2 [28]:

x2r~
s2

s2
~

1
N{p

S resð Þ2

s2
ðA3Þ

where S(res)2 represents the sum of squared residues

between the fit and N data points, while p is the number

of adjustable parameters (maximum four in our case).

In practice s is estimated directly on the same data, as

the standard deviation (per point) of a parabolic fit in a

limited temperature interval (a few degrees) situated far

away from TNI. For an ideal fit x2r~1, while a good fit

yields x2r&1:5.
The quantity x2r can be mapped in the p-dimensional

space by a hypersurface with equal error contours. For

independent parameters, the contours around a local

minimum are more or less circular, like ‘lakes’. In the

case of partial degeneracy, the contours are elongated

ellipses, eventually turning into ‘rivers’ with low slopes

and shallow minima.

In general, the gradient fit method is a very efficient

one but it does not converge rapidly as the search

approaches the minimum [28]. In our case, the fitting

procedure easily optimizes the parameters starting

downwards from the sides of the river, but it might

not continue the optimization along the river if the

gradient is too low. Thus, the result may be influenced

by the starting values of the parameters. Therefore, we

combined two fitting methods. We fixed the value of

one parameter (for instance, b~b’) and performed

(with the gradient method) a fitting sequence with the

remaining three parameters left free. The resulting local

minimum is situated at the intersection of the river with

the plane b~b’. By repeating this procedure in steps of

b, one obtains the whole profile of the river in the

vicinity of the absolute minimum. This is equivalent to

the identification of the path of lowest x2r , which is

known as the ravine search method [28]. Next, the

absolute minimum is precisely located by a parabolic fit

of the x2r curve on few b points. The four coordinates

(bopt and the respective other three parameter values)

represent the best fit. The standard deviation of each

value corresponds to the doubling of minimum x2r . This

uncertainty is equivalent to performing a one-

parameter fit and considering the covariances with

the other parameters. Any independent information on

one of them (such as theoretical predictions for b or

theoretical and experimental polarizability values) will

remove the degeneracy along the river resulting in

narrower x2r parabola.

Compared with the normal procedure of performing

a four-parameter fit in one sequence, the application of

the combined method has the following advantages:

(i) It sets a lower demand on the fitting program

since the number of free parameters is decreased

from four to three; the determination of the

absolute minimum along the river is done in a

separate step,

(ii) It reveals the whole trajectory of the x2r error

function in the parameter hyperspace, rather

than yielding a single set of best-fit results.

Correction of fit results

Once the profile of the river is determined, the

localization of the true absolute minimum encounters

another problem. Figure 8 shows for the 7CB data the

variance of the fit s2 along the river as a function of b.

Curve (1) is obtained for an ideal noise-free data set (72

points in the temperature range T**2T~0.5–10.5K).

The data were generated with equation (6), with the

optimum values of the four parameters (see further

table 1). Obviously, the minimum s2 tends to zero and it

can be easily identified at b~0.257. Away from the

Figure 8. Illustration of two-step fitting method for 7CB.
The variance s2 of three-parameter fits is determined in
steps of b values: (1) fit on ideal noise-free data; (2)
extrapolation of a narrow region of curve (1) around the
minimum; (3) correction function obtained as the ratio of
(1) and (2); (4) fit on experimental points; (5) corrected fit
obtained as the ratio of (4) and (3). The corrected bopt
value is indicated by the arrow.
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minimum, the error increases sharply, but the two

wings of the curve are not symmetrical. This is the

consequence of the non-linear dependence of S(T) on b.
Curve (2) is a parabolic fit to curve (1) restricted to a

narrow interval (b ~0.253–0.261) around the mini-

mum, and extrapolated to the whole b range. Curve (3)

is the ratio of curve (1) and (2) and expresses the non-

linear dependence of the error function on b. This curve
should be used as a weighting factor for the

representation of x2r versus b. Curve (3) is also valid

for other nCB compounds, and does not change

significantly for b~0.2–0.3, nor with the temperature

interval of the data points. The relevance of this

correction is illustrated by the fit (curve 4) to

experimental points of 7CB situated in the same

temperature interval. The apparent position of the

minimum is shifted to lower b values due to the bias of

the baseline (curve 3). The weighted x2r error curve (5) is
obtained as the ratio of curve (4) to curve (3). Its

minimum (b~0.26¡0.08) indicated by the arrow

coincides now with that of curve (1). The effect of

the correction is more pronounced for broad minima.

Similar curves are obtained for the other parameters.

All data were corrected according to this procedure.
In the case of a good fit (s2min&s2), curve (4) is the

sum of curve (1) and of the experimental noise level s2

(horizontal dashed line). The latter broadens the

minimum and limits its depth. The possibility of

identifying the minimum depends on the relative

position of these two curves. It is desirable to have a

curve (1) with high wings and at the same time to have

a low noise level. The height of curve (1) depends on

the extension of the data temperature range in both

directions. Unfortunately, at the high temperature end

the experiment cannot go beyond TNI (about 0.2K

below T**). At the low temperature end, expanding the

range for instance from 10.5 to 30K raises curve (1) by

a factor 10, while shrinking the range to T**-5K lowers

curve (1) by the same factor.

Effect of range shrinking on fit results

In order to check the consistency of fit results, we

applied the double ‘range shrinking’ technique. It

consists of eliminating gradually from the fit the

points situated at each end of the data set, while

observing the stability of the results. At the high

temperature end, the range shrinking showed that

occasionally some points too close to TNI had to be

eliminated. They were probably situated in the narrow

region of coexistence of phases. In any case, for these

points it is required to have a temperature accuracy

better than 0.05K since we showed before that the

whole fit is extremely sensitive to data errors near TNI.

At the low temperature end, the stability with range

shrinking for 5CB, 6CB and 7CB was good. The 8CB

compound is a special case because it exhibits a smectic

A – nematic (SN) phase transition at TSN~33.6‡C and

its influence is present in the nematic state [32]. This is

clearly seen in figure 9. The b value stabilizes only for a

data range T**2Tv3.5K, meaning that the pretransi-

tional smectic behaviour continues to play a role up to

4K above TSN, well into the nematic state.
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